The contribution of Nox4 to NADPH oxidase activity in mouse vascular smooth muscle.

نویسندگان

  • Sara H M Ellmark
  • Gregory J Dusting
  • Mark Ng Tang Fui
  • Nancy Guzzo-Pernell
  • Grant R Drummond
چکیده

OBJECTIVE NADPH oxidases are important sources of reactive oxygen species (ROS) in the vasculature. In phagocytic cells, the catalytic subunit of NADPH oxidase is a glycoprotein, gp91phox. However, vascular smooth muscle cells (VSMCs), which show prominent NADPH oxidase activity, lack gp91phox. Hence, we examined the role of Nox4, a gp91phox homologue, in superoxide production in mouse-cultured VSMCs. METHODS AND RESULTS Incubation of VSMCs with NADPH increased ROS production whether detected by lucigenin-enhanced chemiluminescence or dichlorofluorescein. Superoxide production was inhibited by the NADPH oxidase inhibitors, diphenyleneiodonium and apocynin, but not by inhibitors of other potential sources of superoxide. In unstimulated VSMCs, phosphorothioate antisense oligonucleotides against Nox4 down-regulated mRNA expression of the subunit by 65% and attenuated superoxide production by 41% without affecting Nox1 expression. Interleukin-1beta (IL-beta) thrombin and platelet-derived growth factor (PDGF) also reduced Nox4 mRNA expression after 3 h without affecting Nox1 levels. Of these stimuli, only IL-beta reduced superoxide, but this effect was more rapid (< or =30 min) than its actions on Nox4. CONCLUSIONS Under resting conditions, NADPH oxidase activity in VSMCs is largely dependent upon Nox4 expression. Proinflammatory mediators down-regulated Nox4 but did not affect Nox1 expression, so other factors must compensate to regulate superoxide production.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mitochondrial Regulation of NADPH Oxidase in Hindlimb Unweighting Rat Cerebral Arteries

Exposure to microgravity results in post-flight cardiovascular deconditioning and orthostatic intolerance in astronauts. Vascular oxidative stress injury and mitochondrial dysfunction have been indicated in this process. To elucidate the mechanism for this condition, we investigated whether mitochondria regulated NADPH oxidase in hindlimb unweighting (HU) rat cerebral and mesenteric arteries. F...

متن کامل

Differential upregulation of Nox homologues of NADPH oxidase by tumor necrosis factor-α in human aortic smooth muscle and embryonic kidney cells

NADPH oxidases are important sources of vascular superoxide, which has been linked to the pathogenesis of atherosclerosis. Previously we demonstrated that the Nox4 subunit of NADPH oxidase is a critical catalytic component for superoxide production in quiescent vascular smooth muscle cells. In this study we sought to determine the role of Nox4 in superoxide production in human aortic smooth mus...

متن کامل

A Multifarious NADPH Oxidase

Nox4, one of the 7 isoforms of the NADPH (nicotinamide adenine dinucleotide phosphate) oxidase family that generate reactive oxygen species, was first identified in the early 2000s in kidneys.1 Nox4 was originally described as an oxygen sensor and regulator of kidney cell growth and because of its renal abundance was termed “renox.”1 It soon became evident that Nox4 has a ubiquitous distributio...

متن کامل

Hypoxia-dependent regulation of nonphagocytic NADPH oxidase subunit NOX4 in the pulmonary vasculature.

Nonphagocytic NADPH oxidases have recently been suggested to play a major role in the regulation of physiological and pathophysiological processes, in particular, hypertrophy, remodeling, and angiogenesis in the systemic circulation. Moreover, NADPH oxidases have been suggested to serve as oxygen sensors in the lung. Chronic hypoxia induces vascular remodeling with medial hypertrophy leading to...

متن کامل

Jak/STAT signaling pathway regulates nox1 and nox4-based NADPH oxidase in human aortic smooth muscle cells.

OBJECTIVE Oxidative stress mediated by Nox1- and Nox4-based NADPH oxidase (Nox) plays a key role in vascular diseases. The molecular mechanisms involved in the regulation of Nox are not entirely elucidated. Because JAK/STAT regulates many genes linked to inflammation, cell proliferation, and differentiation, we questioned whether this pathway is involved in the regulation of Nox1 and Nox4 in hu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cardiovascular research

دوره 65 2  شماره 

صفحات  -

تاریخ انتشار 2005